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Ordering phenomena on surfaces or in monolayers can be successfully studied by model systems as binary
hard-disk mixtures, the influence of a substrate being modeled by an external potential. For the field-free case
the thermodynamic stability of space-filling lattice structures for binary hard-disk mixtures is studied by Monte
Carlo computer simulations. As these structures prove to be thermodynamically stable only in high pressure
environments, the phase behavior of an equimolar binary mixture with a diameter ratio of �B /�A=0.414
exposed to an external, one-dimensional, periodic potential is analyzed in detail. The underlying ordering
mechanisms and the resulting order differ considerably, depending on which components of the mixture
interact with the external potential. The simulations show that slight deviations in the concentration of large
particles xA or the diameter ratio �B /�A have no impact on the occurrence of the various field-induced
phenomena as long as the mixture stays in the relevant regime of the packing fraction �. Furthermore the
importance of the commensurability of the external potential to the S1�AB� square lattice for the occurrence of
the induced ordering is discussed.
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I. INTRODUCTION

Soft matter with its structural and elastic properties offers
an attractive route to the design of new materials. The im-
portance of structured surfaces or monolayers lies in their
promising, versatile technical applicability. Examples are an-
tireflection surfaces, optical storage media or the usage in
template-directed colloidal crystallization, the resulting
three-dimensional colloidal crystals being, e.g., of interest
due to their tailored photonic band gaps �1–5�. The physics
of surfaces and adsorbed monolayers has attracted a lot of
interest in this context. In theoretical studies two-
dimensional systems are often used as a model, the interac-
tions with substrates being conveniently modeled by external
fields. The experimental counterpart, two-dimensional sys-
tems of colloidal suspensions, has been studied extensively
in the last decades. They offer direct access to real space data
via laser scanning microscopy �6,7�, an excellent control
over the colloidal interactions and easy tunability of the sub-
strate potential in its shape and strength, as it is modeled,
e.g., by interference patterns of laser beams. A close inter-
play between experiments, analytic theory, and computer
simulations helped to shed light on such fundamental ques-
tions of statistical physics as the nature of melting in two
dimensions with �8–22� and without �23–28� the influence of
external fields. The interaction of monodisperse, two-
dimensional systems with one-dimensional, periodic light
fields lead to the discovery of complex phase behavior as for
example laser induced freezing �LIF� �8,9,13� and laser in-
duced melting �LIM� �12,14�.

Particularly with respect to the interest in complex, two-
dimensional structures for the design of new materials and
the rich phase behavior resulting from the interaction of
monodisperse systems with simple external light fields, ques-
tions arise, as to what complex, periodic structures binary

mixtures might assemble in, and what influence an interac-
tion with simple external light fields has on the phase behav-
ior of such mixtures. The focus of this paper is in particular
on the differences in the induced ordering and ordering
mechanisms that result from the various possible interaction
scenarios with the external potential in a mixture. Binary
hard-disk mixtures are chosen as a model system for the
clarification of these questions. Hard-disks are neither selec-
tive in the choice of the type of next-neighbor particles nor in
the number of next-neighbor particles. Therefore the model
system is ideal to show what ordering can result solely from
geometric constraints due to the diameter ratio �B /�A of the
components of the mixture and due to the concentration of
the mixture. These characteristics make them also a good
model for the ground state of atomic systems with short
range interactions.

The paper is organized as follows. In Sec. II the model
system is introduced and details of the computer simulations
are given. Here also definitions for various parameters used
in the analysis of structural order are given. In the following
sections results are presented and discussed. The focus lies
first on the thermodynamic stability of space-filling lattice
structures, as they are proposed by Likos and Henley �29� in
the limit T→0. The presented Monte Carlo simulations in
the NpT ensemble show that complex lattice structures can
only exist at high hydrostatic pressure as thermodynamically
stable phases. Such high external pressure will inevitably
lead to buckling in surface structuring applications. An at-
tractive alternative to induce order in such systems offers the
controlled manipulation of colloidal systems by external
fields. In what follows therefore systematic studies via
Monte Carlo simulations in the NVT ensemble of a bidis-
perse, 50% hard-disk mixture with diameter ratio �B /�A
=0.414 subjected to an external, one-dimensional, periodic
light field are presented. The underlying ordering mecha-
nisms leading to laser induced phenomena �30�, as laser-
induced demixing �LID�, fissuring and laser induced coexist-
ence of a square lattice phase with a fluid phase as well as
their dependence on the details of the interaction with the*kerstin.franzrahe@uni-konstanz.de
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external field, diameter ratio, concentration of the binary
mixture, and commensurability of the external potential are
discussed in detail.

II. MODEL AND METHODS

We model the analyzed, binary, two-dimensional mixtures
by N=NA+NB hard-disks. The diameter of the larger compo-
nent of the mixture is set to �A=1 in all simulations. All
lengths are measured in units of �A. The packing fraction of
the mixture is defined as �=����NA�A

2 +NB�B
2� / �4N�, where

��=��A
2 is the dimensionless number density. The concen-

tration of large particles in the mixture is given by xA
=NA /N. The mixtures under study are additive mixtures. The
pair potential is given by

��rij� = �� if rij � �ij

0 if rij � �ij .
�

Here �ij =�A for i , j�NA, �ij =�B for i , j�NB and �ij
= ��A+�B� /2 for i�NA and j�NB or vice versa. Information
on the equilibrium phase behavior of these mixtures is ob-
tained via Monte Carlo computer simulations. Periodic
boundary conditions are employed in all simulations. Be-
sides the standard Metropolis algorithm �31� a cluster move
by Lue �32� is employed.

Simulations in the NpT ensemble were used for testing
the thermodynamic stability of given lattice structures. Here
the simulation volume can fluctuate �although shearing the
simulation box was not attempted�. In these studies sug-
gested space-filling lattice structures for various binary mix-
tures �29� were set up with N�1000. Simulations were run
starting from a high, hydrostatic external pressure p�

= p�A
2 /kBT and lowering it in successive runs. The resulting

change in packing fraction � with pressure p� was moni-
tored. After equilibrating the system for 106 Monte Carlo
steps �MCS�, data were taken for another 2	106 MCS.

The influence of a modulated external field was analyzed
by Monte Carlo simulations in the NVT ensemble. In these
simulations additional nonlocal moves are attempted with
particle displacements, which are integer multiples of the
potential wavelength. The simulation box is set up to be
slightly rectangular with Lx /Ly �1.178 and N=1848 for
these simulations. This choice allows not only a box-
spanning square lattice to form, but also a box-spanning
monodisperse triangular lattice of the larger component can
develop. Controlled, field-induced ordering was analyzed in
a xA=50% mixture with diameter ratio �B /�A=0.414. In
such a mixture closed packing is achieved by a S1�AB� lattice
structure. After equilibrating the system for 10	106 Monte
Carlo steps �MCS� the simulations were run for another 10
	106 MCS and data were taken. The external field is mod-
eled by a one-dimensional, periodic potential:

V�r�� = V0 sin�K� · r�� .

The wave vector K� = 4�
a �1,0� is set to be commensurate to

the S1�AB� lattice with a commensurability ratio p= �K� � / �G� �
=2. This implies a wavelength 
=2� / �K� �=1 /	2��. The am-

plitude of the external potential is given in units of kbT, i.e.,
V0

�=V0 /kBT. The resulting energy landscape for particles in-
teracting with the external field is shown schematically in
Fig. 1. For a binary mixture one needs to distinguish three
different, possible interaction scenarios: �i� only the small
component of the mixture interacts with the external field;
�ii� both components of the mixture interact with the external
field; �iii� only the large component of the mixture interacts
with the external field.

In experimental setups the external potential is often gen-
erated by the interference pattern of two laser beams. If the
particle size is not negligible in comparison to the fringe
spacing of the interference pattern, the oscillatory part of the
external potential picks up a fringe wave vector K� and par-
ticle size-dependent prefactor �9,33�. Thus e.g., an appropri-
ate choice of wave vector K� and particle diameters �A and �B
can be used in the experimental realization of the three dif-
ferent interaction scenarios of a binary mixture with such an
external field �33�.

Voronoi diagrams are used to visualize structural order in
the configurations. Quantitative information on the type of
order induced can be obtained by calculating the shape factor
�= C2

4�A of the Voronoi cells �34�. It is a measure, which com-
pares the circumference C of the Voronoi cell with its surface
area A. Thus a circular structure has a shape factor of �=1,
while all cells deviating from this result in ��1. In these
studies the shape factor is used to identify square ��
=1.273� and regular, hexagonal ��=1.1026� structures. The
probability distributions of the shape factor P��� are calcu-
lated from all Voronoi diagrams obtained from the analyzed
configurations within a simulation run. They are used to de-
termine phase boundaries. A typical probability distribution
P��� for the fluid phase is shown in Fig. 2. The inset shows
a typical Voronoi diagram of a fluid configuration. Although
the Voronoi diagram shows a lot of cells with irregular rect-
angular �black�, pentagonal �dark gray, color online: blue� or
hexagonal �light gray, color online: orange� structure, no
crystallites with regular cells are present. Therefore P��� is a
broad distribution with no significant maxima. The change in
the structural ordering of a system due to the interaction with
an external potential can be analyzed by calculating the
change in the probability distributions of the shape factor
�P���= P�� ;V0

��− P�� ;V0
�=0.0�.

2V0

y x

a

FIG. 1. �Color online� Schematic drawing of the energy land-
scape for particles interacting with the external field, which is com-
mensurate to the S1�AB� square lattice with a commensurability
ratio p=2, for an equimolar, binary mixture with diameter ratio
�B /�A=0.414.
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An alternative way to quantify order in the configurations
is the use of rotational order parameters 
m. Rotational order
parameters are defined on the interval �0, 1�. In case the
system has a m-fold symmetry axis 
m=1. The local rota-
tional order is calculated by 
m,j =

1
Nb


k=1
Nb ei�m�kj�. Here �kj is

the angle between the line through particles j and k and the x
axis and Nb is the number of next neighbors taken into ac-
count in the analysis of local order. The global rotational
order of the system is obtained from 
m= � 1

N
 j=1
N 
m,j�. An

analysis of the rotational order of the sublattice of the larger
component of the mixture searching for fourfold or sixfold
rotational symmetry axes is used to identify square and/or
hexagonal ordered structures induced by the external field.
Square lattice structures can also be identified by calculating

8 taking into account all particles in the mixture. Due to the
occurrence of a fissuring regime, the probability distributions
P�
m� develop asymmetric tails, which hampers an analysis
via Binder cumulants.

In addition specific order parameters SB and SA are de-
fined �30�. These capture the characteristic properties of the
observed phases, especially the fissuring regime. They are
derived from the order parameter for nematic liquid crystals
�e.g., �35��, as upon the onset of fissuring dimers of small
particles form that can be oriented along the potential
minima. Therefore SB is constructed to take on values not
equal zero as soon as such dimers appear. The local order
parameter SB,j is defined as

SB,j = � 0 if ZB = 0

1

ZB


k=1

ZB 3�cos � jk�2 − 1

2
if ZB � 0,�

with ZB the number of next neighbors of a small colloid j,
which are also small colloids. All small colloids within a
cutoff radius rc=
 of j are considered as next neighbors. The
angle � jk measures the orientation of the connection line be-
tween j and its next neighbor with respect to the potential
minima. The global order parameter is obtained by evaluat-

ing the average over NB, the number of small particles with
ZB�0, i.e.,

SB =
1

NB


j=1

NB

SB,j .

SB is defined on the interval �−0.5,1�. Dimers aligned with
the potential minima of the external field result in SB=1,
while those oriented perpendicular to the potential minima
result in SB=−0.5. In case of a coexistence of the S1�AB�
square lattice with a fluid phase the peaks in the probability
distribution P�SB� at SB=1 and SB=−0.5 disappear. SA is the
analogous order parameter for the large particles. Here the
cutoff radius, within which next-neighbor particles lie, is set
to rc=1.3�A. In addition the distance between next-neighbor
particles in x direction must be smaller than 
. In the ordered
S1�AB� square lattice phase P�SA� exhibits a deltalike peak at
SA=1. A loss in the alignment of dimers of the large compo-
nent with the orientation of the potential minima shifts the
peak in P�SA� to lower values. From the analysis of P�SA�
and P�SB� phase boundaries are determined.

III. THERMODYNAMIC STABILITY OF BINARY
LATTICE STRUCTURES

An analysis of space-filling packings for binary, hard-disk
mixtures in the T→0 limit by Likos and Henley �29� re-
sulted in the prediction of a detailed phase diagram. In these
studies the constant hydrostatic pressure acting on the system
is set to p=1 and contributions to the free energy from en-
tropy are ignored in the calculation. Thus a ground-state
phase diagram is obtained. The method by which the lattice
structures given in the phase diagram are selected relies on a
maximization of the packing fraction �. In certain regimes
the packing fraction of lattice-gas structures, random tilings,
and coexistence between lattice structures is the same. For
these cases Likos and Henley �29� argue that the preferred
structure is the one with the least order due to its higher
entropy for T�0. From these results one expects a large
number of lattice structures to exist in two-dimensional sys-
tems. Thus the question arises of how difficult it is to obtain
such structures and how stable these structures are. In the
studies presented here, the thermodynamic stability of vari-
ous of the suggested pure phases is tested by use of Monte
Carlo simulations in the NpT ensemble

For equimolar, binary mixtures two possible lattice struc-
tures are suggested by Likos and Henley �29�. In the interval
�B /�A� �0.392,0.414� a S1�AB� square lattice structure and
a H2�AB� structure in the intervals �B /�A� �0.414,0.438�
and �B /�A� �0.627,0.646�. S1�AB� square lattice structures
were set up and simulated for �B=0.392, 0.396, 0.400, and
0.414. Figure 3�a� shows the packing fraction � as a function
of decreasing pressure p�, as it is obtained from simulations.
The discontinuous decrease in � signifies the transition from
the ordered phase to the fluid phase. The square lattice struc-
ture is stable for p��32 for all simulated mixtures. H2�AB�
lattice structures were set up and simulated for �B=0.627,
0.638, 0.640, and 0.646. The packing fraction as a function
of decreasing pressure p� is plotted in Fig. 3�b�. This lattice

1 1.1 1.2 1.3 1.4 1.5
ζ

0

5

10

15

P(
ζ)

FIG. 2. �Color online� The probability distribution of the shape
factor P��� for an equimolar binary mixture with diameter ratio
�B /�A=0.414 in the fluid phase at ��=1.6 and V0

�=0. The inset
shows a typical Voronoi diagram of a fluid configuration. Voronoi
cells are colored according to their structure: rectangular black, pen-
tagonal dark gray �blue� and hexagonal light gray �orange�. All
other structures are plotted in white.
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structure stays stable in systems with p��20 for the ana-
lyzed mixtures. In Fig. 3�b� the stability of the H2�AB� struc-
ture increases as the diameter of the smaller particles �B gets
larger. This can be understood, if one recalls that as �B→1
the H2�AB� structure transforms directly into the monodis-
perse triangular lattice structure. In comparison a higher ex-
ternal pressure is needed in order to stabilize a S1�AB� square
lattice structure in the equimolar mixture.

An overview of the simulated binary mixtures is given in
Fig. 4. Structures, for which a pressure regime, in which the
structures stay stable, could be identified, are marked by
crosses �green�. For the mixture with xB=4 /5 marked by a
triangle �blue� the lattice structure was not stable within the
simulated pressure regime of p��200. For illustration
sketches of the studied lattice structures are shown in Fig. 4.
Also given are the packing fraction � and the pressure p�,
above which all of the simulated mixtures were found to be
stable for the given lattice structures. Figure 4 shows that the
more a given lattice structure deviates from the triangular,
monodisperse lattice the higher the hydrostatic pressure
needed to stabilize it. The simulations show that the com-
plex, space-filling lattice structures for binary hard-disk mix-
tures are high pressure phases. This makes it difficult to ob-
serve such structures in experimental set ups, as by
increasing the pressure within the surface the probability that
the monolayer will escape into the third dimension by buck-
ling will also increase. These findings show clearly the im-
portance of the search for alternative ways to stabilize or
induce the formation of ordered structures in two-
dimensional, binary mixtures. One promising approach is the
use of external fields.

IV. CONTROLLED STRUCTURING BY EXTERNAL
FIELDS

Exposing a monodisperse two-dimensional fluid to an ex-
ternal field, which is modulated periodically in one dimen-
sion, one observes a modulation in the density according to
the imposed modulation. Such a fluid phase is called a modu-
lated liquid �ML�. In addition to this direct response to the
external field such systems are known to show a surprisingly
complex phase behavior. E.g., depending on the choice of
parameters defining the system, reentrant LIF and LIM tran-
sitions can occur. As the amplitude of the modulated external
field is increased the system freezes into a locked floating
solid. A further increase in the amplitude results in a strong
confinement of the particles within the minima of the exter-
nal field and an increase in fluctuations along these minima.
This leads to an uncoupling of particles in adjacent minima
and therefore a reentrant melting into the modulated liquid.
These laser induced phenomena in monodisperse systems
have been studied extensively in experiments �8–10,13,14�,
computer simulations �12,18–22�, and various analytic theo-
ries �8,11,15–17� over the last decades. For a review on these
phenomena in monodisperse systems see �17� and reference
therein. Both the laser induced freezing and the lattice struc-
ture of the resulting locked floating solid, as well as the
details of the reentrance into the modulated liquid depend
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FIG. 3. �Color online� The packing fraction � as a function of
decreasing pressure p� in an equimolar binary mixture. Two differ-
ent lattice structures are tested for their stability: �a� the S1�AB�
square lattice for various mixtures with �B /�A� �0.392,0.414�. �b�
The H2�AB� lattice for mixtures with �B /�A� �0.627,0.646�.
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given lattice structure were found to be stable.
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strongly on the choice of commensurability ratio p and the
choice of interaction potential of the particles. Further inter-
esting laser induced phenomena, such as laser induced con-
densation, are predicted to occur in three-dimensional
colloid-polymer mixtures, when they are exposed to a peri-
odically modulated external field �36�.

In the studies presented in this paper, we focus on the
controlled ordering of two-dimensional, binary mixtures. By
exposing these mixtures to similar external fields as in the
monodisperse studies, we extend these studies to a more gen-
eral situation and retain at the same time the possibility for a
direct comparison of the order inducing mechanisms at work.
The focus is thus on the question of how the addition of
another length scale into the system influences the intricate
competition between adsorbate-adsorbate and adsorbate-
substrate interactions and whether such a simple external
field will suffice for a controlled structuring of the mono-
layer. As has been discussed in detail in �30,37� for the case
that only the smaller component of the mixture interacts with
the external field, laser induced phenomena such as LID and
a laser induced coexistence could be identified and the inter-
action with the substrate completely changes the miscibility
of the binary mixture.

In this paper, we show that the underlying ordering
mechanisms in a binary mixture exposed to an external field
differ significantly depending on which components interact
with the external potential. To this end we compare the oc-
curring phases �ML, LID, fissuring, and LIF� and the result-
ing phase diagrams for the possible coupling scenarios for
the components of the mixture to the external field. In addi-
tion the influence the relative strength of the coupling of the
different components of the mixture to the external field has
on the ordering is studied. These differences are discussed in
detail, as well as the influence of incommensurability of the
periodicity of the external field and alterations in the type of
mixture due to deviations from equimolar mixtures or from
the diameter ratio �B /�A=0.414 of the components.

A. Modulated liquid

At low number densities �� the external field induces a
variation in the density according to the external periodicity
in the liquid phase. The characteristics of the resulting modu-
lated liquid vary for the three analyzed couplings of the com-
ponents of the mixture to the external potential. Nevertheless
all three scenarios show an induced structural crossover.
Structural crossover has been predicted to occur in binary
mixtures by Grodon et al. �38,39� and has been recently
observed experimentally �40�. As discussed in detail in �30� a
structural crossover is induced for the case that only the
small component interacts with the external field. For V0

�=0
the large particles in the mixture form a spanning network.
The dominating wavelength in the asymptotic oscillations in
the pair correlation functions gAA�r� and gBB�r� is therefore
set by the radius of the large particles. Due to the coupling to
the external potential the wavelength of the exponentially
damped oscillations in the pair correlation functions changes
from approximately �A /2 in the field free case to 
 /2 in the
modulated liquid.

Figure 5 shows the total correlation functions hBB�r� and
hAA�r� for the case that both components interact with the
external potential. As in the case that only the small compo-
nent interacts with the external field �30�, both correlation
functions show an induced structural crossover. But, while
the system at ��=1.6 is still in the modulated liquid phase
for an amplitude of the external potential of V0

�=2.1 for the
case of an exclusive interaction of the small component of
the mixture with the external potential, this is no longer true,
if the large component interacts with the external potential as
well. Therefore Fig. 5 shows the total correlation functions at
V0

�=0.6, where the system is still in the modulated liquid
phase, as can be seen in the phase diagram for this scenario
of interaction of the components of the mixture with the
external potential in Fig. 10.

In contrast to this a coupling of solely the large compo-
nent to the external field suffices not to imprint the periodic-
ity of the external potential on the total correlation functions
of the component not interacting directly with the external
potential, i.e., hBB�r�. Figure 6 shows the total correlation
functions hBB�r� and hAA�r� for this situation. For hAA�r� in
Fig. 6�a� a structural crossover to a dominant wavelength of

 /2 in the asymptotic oscillations is evident. This wave-
length cannot be discerned in hBB�r�, as Fig. 6�b� shows. So
while the small component of the mixture can impart order
onto the configuration of the large component, in the case
that it alone interacts with the external potential, the large
component does not succeed in passing down order onto the
small component in the reverse case.

B. LID

Introducing small particles into a monodisperse system of
large particles breaks the spanning network of large particles.
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FIG. 5. �Color online� Comparison of the total pair correlation
functions �a� hAA�r� and �b� hBB�r� of an equimolar mixture with
�B /�A=0.414 exposed to an external, periodic potential at ��

=1.60. Shown is the case when both components of the mixture
interact with the external potential.

CONTROLLED STRUCTURING OF BINARY HARD-DISK… PHYSICAL REVIEW E 79, 051505 �2009�

051505-5



This results in a competition between free volume and con-
figurational entropy and leads to clustering �41� and struc-
tural crossover �38–40�. Nevertheless in a purely repulsive
system the effect is too weak to drive phase separation. A
heuristic argument by Buhot et al. �42� yields a diameter
ratio of �B /�A=1 /100 as upper limit for possible phase
separation in binary hard-disk mixtures. In the presence of a
modulated external field the situation changes. For a given
external potential the system will try to minimize its energy
by aligning those components of the mixture with the poten-
tial minima that interact with the external field. If only one of
the components interacts with the external field, one would
therefore expect to observe a complete phase separation in an
open boundary system. In the NVT ensemble by contrast this
minimization of the energy competes with a maximization of
entropy by an optimal packing of the hard-disks. This com-
petition results in an ordering transition for dense systems.
At low amplitudes V0

� of the external field LID occurs
�30,37�. Laser induced demixing results in the coexistence of
a small component enriched fluid with a droplet of a mono-
disperse crystalline structure formed by the larger component
for all the studied scenarios of coupling of the components of
the mixture to the external field �37�.

If only the smaller component of the mixture couples to
the external field, this component will attempt to form chains
along the minima of the external potential. Due to the chosen
periodicity small particles on adjacent minima are un-
coupled. This chain formation has a lower number density
than the fluid mixture. Under the constraint of a fixed overall
number density, the larger component is thus indirectly in-
duced to form a dense packing, i.e., a triangular lattice struc-
ture in order to facilitate the energy minimization of the

smaller components. Laser induced demixing takes place. As
the large particles do not interact with the external potential,
the crystallographic orientation of the droplet is arbitrary.

If in addition the larger component interacts with the ex-
ternal potential, these particles will also have to align with
the potential minima in order to minimize the energy of the
system. Large particles in adjacent minima will overlap, so a
chain formation of large particles is not possible. A monodis-
perse triangular lattice of the large particles is not commen-
surate to the periodicity of the external field, instead a rhom-
bic, commensurate lattice structure results. So also in this
case a laser induced demixing occurs, although the underly-
ing ordering mechanism and the resulting ordered structure
differ from the first scenario.

In case that only the large component of the mixture is
coupled to the external potential, no chain formation of the
small component will take place. The system minimizes its
energy solely by aligning the large particles with the poten-
tial minima and only the overall density induces the forma-
tion of rhombic, commensurate lattice structures in order to
maximize entropy. Nevertheless this also results in a laser
induced demixing.

The differences in the induced demixing show in the
change in the probability distribution of the shape factor
�P���= P�� ;V0

��− P�� ;V0
�=0.0� for the three scenarios of

coupling to the external potential plotted in Fig. 7 for mix-
tures with ��=1.71. Systems with an interaction of the large
component to the external field show a broader maximum
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FIG. 6. �Color online� Comparison of the total pair correlation
functions �a� hAA�r� and �b� hBB�r� of an equimolar mixture with
�B /�A=0.414 exposed to an external, periodic potential at ��

=1.60. Shown is the case when only the large component of the
mixture interacts with the external potential.
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FIG. 7. �Color online� The change in the probability distribution
of the shape factor �P��� for the different scenarios of coupling to
the external field of the components of the mixture at ��=1.71. The
coupling of a component to the external field is indicated in the
schematic inset by a filled circle, while an open circle denotes no
coupling to the external field of the component concerned. �a� All
three cases are in the demixing regime for V0

�=0.9. �b� At V0
�=2.1

systems with a coupling of the small components to the external
field have switched into the coexistence regime of the square lattice
with the modulated liquid.
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near �=1.1026 than the system with exclusive interaction of
the small component with the external potential. This is due
to the fact that the Voronoi cells of the phase separated
monodisperse, rhombic crystallites are not regular hexagonal
cells. The range in potential strength V0

� over which laser
induced demixing is observed also differs for the various
coupling scenarios. As shown in Fig. 7�b� at V0

�=2.1 the
systems with an interaction of the small component to the
external field have already left the demixing regime. They
show the characteristic broad maxima near �=1.273, which
are typical for the Voronoi cells in the S1�AB� square lattice.
In addition the maxima in �=1.1026 due to hexagonal
Voronoi cells have disappeared completely. In contrast to this
the system with exclusive interaction of the large component
with the external field shows no tendency at all to form
square lattice structures.

C. Fissuring regime

For all three scenarios of coupling the components of the
mixture to the external potential at high densities only the
commensurate S1�AB� square lattice structure allows for an
energy minimization by aligning the relevant component to
the potential minima and maximizing the entropy by a close
packing. Therefore a laser induced freezing transition is ex-
pected to result in a S1�AB� Locked Floating Solid. In the
monodisperse laser induced freezing scenario with a com-
mensurate external potential, the resulting locked floating
solid is stabilized solely by fluctuations. In contrast to this
the geometry of the bidisperse system exposed to an external
field commensurate to a S1�AB� square lattice structure pro-
vides a permanent coupling between adjacent minima at in-
termediate and high number densities ��, as the diameter of
the large component �A is larger than the wavelength 

=1 /	2�� of the modulation in the commensurate case. A
complete decoupling of adjacent minima occurs only for 

�

1
2 ��A+�B�, i.e., at densities below ���1.0. The system is

geometrically blocked and a laser induced melting along the
potential minima cannot occur. Nevertheless at high ampli-
tudes V0

� of the external potential, the position fluctuations
show a pronounced anisotropy, which opens up a pathway to
a different melting mechanism. Fluctuations in particle posi-
tions are enhanced along the minima of the external poten-
tial. Due to this, gaps in the sublattice of the large particles
can form, which can be occupied by a small particle. In this
way small particles can escape the cage formed by large
particles and the sublattice of the smaller component starts to
melt along the direction of the modulation. This leads to the
formation of fissures in the sublattice of the larger compo-
nent perpendicular to the minima of the external field, which
are filled by the smaller component. For a commensurate
choice of the modulation of the external potential �i.e., 

=1 /	2���, one can calculate the density at which a local
fluctuation of the large particles will open up a large enough
gap for a small particle to escape its cage. For the mixture
under study this can occur for ���1.56. In the simulations
fissuring sets in at far higher densities. This is due to long
wavelength excitations in the crystal. The characteristics of
the observed fissures also differ for the three simulated cou-

pling scenarios of the components of the mixture to the ex-
ternal field. Systems, in which the small component interacts
directly with the external potential, show the formation of
dimers of small particles in the fissure that are oriented along
the minima of the external potential, while for an exclusive
interaction of the large component with the external potential
the positions of the small particles within the fissures are
arbitrary. As illustration Fig. 8 shows details of snapshots
containing a fissure for the two different cases. The range of
densities �� or alternatively packing fractions � over which
the fissuring regime extends is larger for the case that both
components interact with the external potential �phase dia-
gram Fig. 10�, than if only the smaller component couples to
the external field �phase diagram Fig. 9 �30��.

D. LIF

In binary mixtures the geometric blocking of the laser
induced melting transition, as it occurs in monodisperse sys-
tems, enhances the stabilization of the Locked Floating Solid
by the external potential and leads e.g., to the occurrence of
a coexistence between the locked floating solid and the
modulated liquid for the case, that only the small component
couple to the external field. This type of coupling to the

a) b)

FIG. 8. �Color online� Detail of configurations containing a fis-
sure in the S1�AB� square lattice, which forms in the presence of an
external, one-dimensional modulated potential at ��=1.73 and V0

�

=5.0. �a� A typical fissure for the case, that only the small compo-
nent interacts with the external potential. Small particles filling the
fissure form dimers that orient along the minima of the external
potential. �b� The situation for the case that only the large compo-
nent of the mixture interacts with the external field. The placement
of the small particles within the fissure is arbitrary.

FIG. 9. �Color online� The phase diagram as obtained from the
analysis of the order parameters SB and SA and the shape factor � for
an equimolar binary mixture with diameter ratio �B /�A=0.414 ex-
posed to an external periodic potential, commensurate to the S1�AB�
square lattice for the case that only the small component of the
mixture interacts with the external potential. Lines are a guide for
the eyes. Figure reprinted from Franzrahe et al. �30�, Fig. 4.
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external field results at intermediate to high external field
amplitudes V0

� in the existence of a S1�AB� square lattice
locked floating solid at high densities ��, followed by a fis-
suring regime and a coexistence regime as the density de-
creases. At low densities the fluid phase is a modulated liq-
uid. For a detailed discussion of the phase diagram, which is
shown in Fig. 9 for this case, see �30�.

The phase diagram for the situation, when both compo-
nents of the mixture interact with the modulated, external
field shown in Fig. 10, differs significantly from the one
before in that there is no regime of coexistence between the
S1�AB� lattice and the equimolar modulated liquid. An in-
crease in the amplitude of the external potential at constant
density leads to a competition between rhombic, monodis-
perse domains of the large component and square lattice do-
mains. As the rhombic domains are directly stabilized by the
external potential, these structures hamper the growth of the
square lattice domain. The resulting lattice structure is a
S1�AB� square lattice with frozen in disorder. Some of the
disorder anneals with a further increase in V0

�, but some de-
fects and grain boundaries persist. As a comparison of the
phase diagrams �compare Figs. 9 and 10� for the two dis-
cussed coupling scenarios shows, both phase boundaries, the
one from the fissuring regime to the S1�A� lattice with frozen
in disorder and the one to the modulated liquid, are shifted to
considerably lower packing fractions for the case that both
components of the mixture couple to the external potential.
This is due to the direct stabilization by the external field of
the occurring ordered phases. The phase diagram was calcu-
lated from simulation runs at constant V0

� by lowering suc-
cessively the density �� and adjusting the modulation of the
external field. From an analysis of the probability distribu-
tions P�SB� and P�SA� the boundaries of the fissuring regime
were obtained. The transition from the S1�AB� square lattice
structure with frozen in disorder to the modulated liquid is

difficult to determine. The lattice structure fragmentates into
more and more competing domains as the number density ��

decreases. In the phase diagram that density �� is shown as
phase boundary, at which the probability distributions of the
rotational order parameters 
4 and 
8 show a significant
change. This is consistent with the fact that at these densities
also 
SB� starts to grow monotonously, as the chain formation
of the smaller component dominates.

From these studies it is evident that, if the large compo-
nent also interacts with the external potential, it gets difficult
to grow a perfect, defect free S1�AB� square lattice. So the
question arises, up to which strength of coupling to the ex-
ternal field of the large component relative to that of the
small component a coexistence between S1�AB� square lat-
tice and modulated liquid does occur. For a comparison
simulations at ��=1.68 with a coupling strength of VB,0

�

=V0
� of the smaller component to the external field were run

with various strength of coupling for the large component:
VA,0

� =0.0·V0,B
� , VA,0

� =0.1·V0,B
� , VA,0

� =0.25·V0,B
� , VA,0

�

=0.5·V0,B
� , VA,0

� =0.75·V0,B
� , and VA,0

� =1.0·V0,B
� . In these

simulations the amplitude V0
� of the external potential was

successively increased. It was found, that an additional cou-
pling of the large component to the external field suppresses
laser induced demixing and the condensation of a monodis-
perse, triangular lattice at small relative coupling strengths.
The coupling strength for the larger component has to be
above a threshold �VA,0

� �0.1·V0,B
� � in order to induce a phase

separation. The resulting monodisperse structure is rhombic
due to the direct interaction of the large component with the
external potential. At intermediate potential amplitudes V0

�

the differences in the laser induced freezing scenarios be-
comes apparent in the probability distributions of the rota-
tional order parameter 
8. The order parameter was evalu-
ated in sub-boxes of the linear dimension LB=L /9. Testing
for an eightfold symmetry axis small and large particles in
the system were considered. The resulting distributions
P�
8� for the simulated strengths of coupling to the external
field for the large component are shown in Fig. 11 for V0

�

=2.1. These distributions show, that a coexistence of the
S1�AB� square lattice with the modulated liquid occurs for
VA,0

� �0.25·V0,B
� . As the coupling of the large particles to the

external field gets stronger the peak of the disordered phase
disappears and the peak of the ordered phase gets broader. In

FIG. 10. �Color online� The phase diagram as obtained from the
analysis of the order parameters SB and SA and the shape factor � for
an equimolar binary mixture with diameter ratio �B /�A=0.414 ex-
posed to an external periodic potential, commensurate to the S1�AB�
square lattice for the case that both components of the mixture
interact with the external potential. For this case of coupling to the
external potential no laser induced coexistence occurs, but the fis-
suring regime and the S1�AB� lattice with defects are stabilized
down to far lower packing fractions � as compared to the case,
when only the small component interacts with the external potential
�Fig. 9�. Lines are a guide for the eyes.
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conclusion, the weaker the coupling of the large component
to the external field, the less defects hinder the growth of the
S1�AB� square lattice.

For the case that exclusively the large component inter-
acts with the external field no Laser Induced Freezing into a
square lattice was observed in the simulations. Low potential
strengths lead to a laser induced demixing into a monodis-
perse, rhombic crystal of the large component and a modu-
lated liquid. As the potential amplitude V0

� is raised no ten-
dency to form square lattice structures was found in this
system. Instead an irregular rhombic lattice with grain
boundaries of the large component grows. The small par-
ticles fill the holes of this irregular crystal. A typical configu-
ration is shown as an inset in Fig. 12. The probability distri-
bution of the rotational order parameter 
6 calculated from
the configurations of the large component only, as they are
shown in Fig. 12, are peaked near 
6=1, but show a sub-
structure due to the grain-boundaries. The simulations with
varying relative coupling strength V0,A

� /V0,B
� to the external

field of the two components of the mixture already showed,
that any coupling of the large component to the external field
hinders the breaking up of the monodisperse, rhombic struc-
tures and the defect-free growth of square lattice structures.
A restructuring of the rhombic crystallites into a square lat-
tice at high densities is therefore rather improbable and the
danger of getting stuck in a local minimum of the free energy
is high in this system. So as for low number densities, in the
Modulated Liquid phase, the exclusive coupling of the large
component to the external field does not suffice to imprint
order onto the small component of the mixture.

E. Commensurability of the external field

So far the phase behavior of a binary mixture in a modu-
lated external field commensurate to the S1�AB� square lat-
tice was analyzed. This raises the question, whether the laser
induced phenomena discussed above do only occur in a com-
mensurate setting. For a comparison the phase diagram for
four incommensurate settings with constant, slightly differ-
ent wavelengths �
=0.536, 
=0.541, 
=0.546 and 


=0.549� of the external potential were calculated from Monte
Carlo simulations. Only the small component was allowed to
interact with the external potential. In these simulations a
change in density can only be achieved by varying the length
of the simulation box Ly and keeping Lx constant. Thus the
starting configuration of the locked floating solid is a rectan-
gular lattice structure at high densities instead of the square
lattice structure of the previous studies. The differences in
the locked floating solid is also apparent in the pair correla-
tion functions gBB�r�� and gAA�r��. These are plotted in Fig. 13
for V0

�=5.0 for two number densities �� for systems with a
constant wavelength 
=0.546 of the periodic external poten-
tial. The anisotropy in the maxima of gBB�r�� reflects clearly
the coupling of the small particles to the external potential at
both number densities. As the large particles do not couple to
the external potential directly, isotropic maxima in the pair
correlation function gAA�r�� are to be expected. Nevertheless
due to the structure of the locked floating solid in these in-
commensurate settings the maxima of gAA�r�� show a strong
anisotropy at high number densities. Here fluctuations of the
large particles along the minima of the external potential are
suppressed. Only at lower number densities, as the locked
floating solid approaches a square lattice structure, do the
maxima in gAA�r�� get isotropic.

An analysis of the order parameters SA and SB as well as
of the shape factor � was used for the calculation of the
phase diagram from the incommensurable simulations. An
overlay of the phase boundaries for all four systems is given
in Fig. 14. These phase diagrams intersect the plane of com-
mensurability consistently. The wavelengths 
=0.536 and

=0.541 correspond to the commensurate densities ��

=1.74 and ��=1.71. At these densities the system is in the
fissuring regime. The other two wavelengths correspond to
densities �
=0.546 to ��=1.68 and 
=0.549 to ��=1.66� at
which the system is in the coexistence regime of the S1�AB�
square lattice and the modulated liquid. The existence of a
locked floating solid, a fissuring regime and a coexistence
region could be confirmed for incommensurate settings from
these simulations. But due to the incommensurability with
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boundaries and defects in the irregular monodisperse, rhombic crys-
tal, but no tendency of the system to show a laser induced freezing
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the S1�AB� square lattice, the crystallographic characteristics
of the locked floating solid differ. They change from a rect-
angular oriented with its long axis perpendicular to the po-
tential minima at high number densities to one oriented along
the potential minima at densities below the commensurate
density for a given wavelength. The simulations showed fur-
thermore that at high densities and intermediate amplitudes
of the external potential V0

� the rectangular locked floating
solid can be unstable against the occurrence of fractures.
Unlike the fissures at lower densities the fractures run in
diagonals through the crystal and will heal again as the den-
sity is lowered. From these studies one can conclude, that for
an experimental realization with a fixed wavelength for the
external light field, a wavelength that intersects the plane of
commensurability in the coexistence regime should be cho-
sen in order to enable the observation of all laser induced
phenomena.

F. Importance of the packing fraction of the mixture

The phase diagrams discussed for the various coupling
scenarios for the components of the binary mixture are not
only given in terms of number density �� as a function of the
amplitude of the external potential, but also in terms of the
packing fraction �. This is a more general variable for binary
mixtures, as mixtures deviating from an equimolar mixture
or with different diameter ratios can have the same packing
fraction as the so far studied equimolar binary mixture with
�B /�A=0.414. Therefore the influence of deviations in the
concentration of large particles from xA=50% on the phase
diagram for a system with exclusive interaction of the
smaller component with the external field was studied. The
reference system for the comparison is the equimolar mix-
ture with �B /�A=0.414 at ��=1.71. Thus the packing frac-
tion is �=78.7%. At this packing fraction an increase of the
amplitude of the external potential induces first a demixing
and results at higher amplitudes in a coexistence of the
square lattice with the modulated liquid. A lowering of the

concentration of large particles in the mixture by approxi-
mately 3% �xA=46.9%� lowers the packing fraction to only
�=75.2%. At this packing fraction the phase diagram for the
equimolar mixture �Fig. 9� suggest that no demixing should
occur before the coexistence regime is reached as V0

� is in-
creased. This is confirmed by simulations. Figure 15�a�
shows the change in the probability distributions of the shape
factor � with respect to the probability distribution at V0

�

=0.0, i.e., �P���= P�� ;V0
��− P�� ;V0

�=0.0�, for the mixture
with xA=46.9%. For the reference mixture with xA
=50.0% �P��� is depicted in Fig. 15�b�. In contrast to the
equimolar mixture the xA=46.9% mixture shows no en-
hancement of the peak for regular, hexagonal Voronoi cells
in �P��� at low V0

�, i.e., laser induced demixing. The mixture
shows instead a direct transition to the coexistence regime.
An increase in the concentration of large particles to xA
=53.1% in contrast increases the packing fraction to �
=82.1% at a number density of ��=1.71. At such high pack-
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FIG. 15. �Color online� The change in the probability distribu-
tions of the shape factor � at various amplitudes of the external
potential V0

� with respect to the probability distribution at V0
�=0.0

for a binary mixtures with diameter ratio �B /�A=0.414 with exclu-
sive coupling of the small particles to the external potential is plot-
ted for mixtures with various concentrations of large particles xA.
�a� At xA=46.9% and a number density of ��=1.71 the mixture has
a packing fraction of �=75.2%. �b� The reference mixture with
xA=50.0% at ��=1.71 has a packing fraction of �=78.7% as has
the mixture with xA=53.1% in �c� at ��=1.64.
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ing fractions the reference mixture is already in the ordered
phase. This hampers a direct comparison with the reference
system. Instead this mixture was simulated at ��=1.64 which
corresponds to �=78.7%, which is the same packing fraction
as the reference mixture has. So one expects to observe, de-
mixing followed by coexistence as V0

� is increased. In Fig.
15�c� �P��� for the mixture with xA=53.1% is plotted. For
this case the peak for regular, hexagonal Voronoi cells is
enhanced in comparison to the reference mixture shown in
Fig. 15�b�. The monodisperse crystallite does not dissolve as
easily, so at V0=2.1 there is still a peak in �P��� at �
=1.1026 due to regular, hexagonal Voronoi cells. Neverthe-
less square lattice structures have already formed, as can be
seen by the broad maximum that has developed near �
=1.273.

Deviations in the ratio of diameter from �B /�A=0.414 in
an equimolar mixture will also result in changes in the pack-
ing fraction �. As a reference the equimolar system with
�B /�A=0.414 at ��=1.71 with only the smaller component
interacting with the external field was taken. Simulations at
the same number density and with diameter ratios �B /�A
=0.154, 0.300, 0.400, 0.420, and 0.430 with a successive
increase in V0

� were conducted. For �B /�A=0.154 the densest
packing can be achieved by a triangular lattice of the large
component with small particles placed in the interstices of
this lattice. Such a structure is not commensurate to the ex-
ternal, periodic field. At the density of choice, ��=1.71, the
commensurate S1�AB� square lattice structure can accommo-
date small particles of up to a diameter of �B=0.529 in the
interstices of the square lattice of large particles without an
overlap. The maximum diameter of small particles used in
simulations for the comparison of the phase behavior as the
amplitude of the external potential is increased, is �B
=0.430. With this choice of simulated mixtures the range of
packing fractions analyzed is 68.7%–79.6%. Figure 16
shows �P���, the change in the probability distributions for
these mixtures with respect to the corresponding field free
cases with V0

�=0, for the simulated ratio of diameter at vari-
ous potential strengths V0

�. At low amplitudes of the external
potential, as shown in Fig. 16�a�, only mixtures with �B
�0.414 show the typical peak for regular, hexagonal
Voronoi cells at �=1.1026, which signifies laser induced de-
mixing. The packing fractions of the remaining mixtures are
too low to show any demixing at V0

�=0.3. While the mixture
with �B=0.400 shows demixing at V0

�=0.9, no change in the
structure of the Voronoi cells is induced for the mixtures with
�B /�A=0.154 and 0.300. This is consistent with the phase
behavior of the reference mixture �Fig. 9�. The mixture with
�B=0.414 shows laser induced demixing at low V0

� only for
packing fraction ��75%. At the given number density the
mixtures with �B�0.300 lie below this limit. For V0

�=2.1 as
shown in Fig. 16�c� the reference mixture with �B=0.414 is
in the coexistence regime. In this regime the difference be-
tween systems with diameter ratios smaller than the refer-
ence system and those with larger ratios can be discerned.
While the mixture with �B=0.400 shows an analogous be-
havior as the reference mixture, the systems with larger ratio
of diameter still show a significant fraction of Voronoi cells
with regular, hexagonal structure in the configurations. In
such mixtures due to their higher packing fraction � the

monodisperse, triangular lattice crystallites cannot dissolve
easily. The mixtures with �B /�A=0.154 and 0.300 show no
significant change in the distribution of the shape factor for
these amplitudes of the external potential. For �B=0.300 the
mixture has a packing fraction �=73.2%. The phase diagram
of the reference mixture in Fig. 9 shows that the transition
line between coexistence regime and modulated liquid for
high amplitudes of the external potential V0

� lies in the region
of ���1.59, i.e., ��73.1%. The mixture with �B=0.300
lies with its packing fraction within this transition region at
high V0

�. Simulations for this mixture up to V0
�=8.4 showed a

slight increase in the local fourfold rotational order, but a
transition into the coexistence regime did not occur.

V. CONCLUSIONS

We have shown via Monte Carlo simulations that com-
plex lattice structures in binary hard-disk mixtures form ther-
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FIG. 16. �Color online� The change in the probability distribu-
tions of the shape factor � at various amplitudes of the external
potential V0

� with respect to the probability distribution at V0
�=0.0

for equimolar, binary mixtures with exclusive coupling of the small
particles to the external potential is plotted for mixtures with vari-
ous diameter ratios �B /�A. Shown are the distributions in the de-
mixing regime of the reference mixture at �a� V0

�=0.3 and �b� V0
�

=0.9 and in the coexistence regime of the square lattice with the
modulated liquid of the reference mixture at �c� V0

�=2.1.
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modynamically stable phases only in a high pressure envi-
ronment. An alternative, successful route to the controlled
structuring of such binary mixtures is exposing the system to
a modulated external field. Weak external fields allow a con-
trolled tuning of the miscibility of the mixture. The ordering
mechanisms resulting in a laser induced demixing �LID� in
this regime depends on the details of the coupling of the
components of the mixture to the modulating field. Also the
occurrence of laser induced freezing and the existence of a
coexistence between the S1�AB� square lattice and the modu-
lated liquid was shown to depend strongly on the details of
the coupling of the components of the mixture to the exter-
nal, modulating field. On the other hand slight deviations
from the characteristics of the system as the concentration of

large particles xA or the diameter ratio �B /�A, as they are
probable to occur in any experimental realization, could be
shown to have no impact on the occurrence of the laser in-
duced phenomena, as long as the mixtures stays in the rel-
evant range of packing fraction �. This was also shown to be
true for slight deviations from the constraint of commensu-
rability of the periodicity of the external potential with re-
spect to the S1�AB� square lattice.
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